Math, asked by kumar45833179, 10 months ago

if 17sinA=8,find the values of CosA and tanA

Answers

Answered by ButterFliee
9

GIVEN:

  • 17sinA = 8

TO FIND:

  • What is the value of CosA and TanA ?

SOLUTION:

We have,

⠀⠀⠀17sinA = 8

\implies sinA = 8/17

In right ∆POM

\bf\red{sinA = \frac{Perpendicular}{Hypotenuse} = \frac{PM}{PO}}

If PO = 17k, then PM = 8k, where k is a positive number.

Using Pythagoras theorem:

\rm\red{ (Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2 }

\implies\rm{ (PO)^2 = (OM)^2 + (PM)^2<strong> </strong>}

\implies\rm{ (17k)^2 = (OM)^2 + (8k)^2}

\implies\rm{ {(17k)}^{2} - {(8k)}^{2} = {(OM)}^{2 }}

\implies\rm{ 289k - 64k = (OM)^2}

\implies\rm{ 225k = OM^2}

\implies\rm{ 15k = OM}

Thus,

\bf\red{CosA = \frac{Base}{Hypotenuse}}

\implies \rm{CosA = \frac{15}{17}}

\bf\red{TanA = \frac{Perpendicular}{Base} }

\implies\rm{ TanA =\frac{ 8}{15}}

❛ Hence, Cos A = 15/17

TanA = 8/15 ❜ 

_________________

Attachments:
Answered by silentlover45
3

Answer:

CosA = base/hypothenuse = 15/17

TanA = perpendicular/hypothenuse = 8/15

\large\underline\mathrm{Given:-}

\implies 17sinA = 8

\large\underline\mathrm{To \: find}

What is the value of CosA and TanA ?

\large\underline\mathrm{Solution}

\implies 17sinA = 8

\implies sinA = 8/17

\implies perpendicular = 8

\implies hypotenuse = 17

\implies base = ?

  • Using Pythagoras theorem:

\implies h² = p² + b²

\implies 17² = 8² + b²

\implies b² = 289 - 64

\implies b² = 225

\implies b = 15

Thus,

CosA = base/hypothenuse = 15/17

TanA = perpendicular/hypothenuse = 8/15

Similar questions