Math, asked by mahadevaswamykc, 1 year ago

if (-2.1) (4.6) (6-3) are the vertices of a
triangle. find the perimeter of a triangle.( this is in co ordinate geometry).​

Answers

Answered by Sharad001
103

Question :-

if (-2,1) , (4,6) and (6,3,) are the vertices of a triangle .Find the perimeter of this triangle .

Answer :-

→ Perimeter = √(61) + √(85) + √(80)

To find :-

→ Perimeter of triangle

Formula used :-

→ Perimeter of a triangle = sum of all sides

→ Distance between points ,

 \star \:   \sqrt{ {( \: x_2  - x_1)}^{2} +  \:  \:  {( \:y _2\:   -y _1) }^{2}  }  \\

______________________________

Step - by - step explanation :-

Given that,

Given points are ,

A ( -2,1) ,B (4,6) and C ( 6,3)

If we find perimeter of this triangle ,

Then firstly find the distance of AB , BC and CA ,

Therefore ,

If these are the sides of a triangle then perimeter of triangle = AB+ BC+ CA

___________________________

Solution :-

Firstly find distance between A and B ,

Let points are,

 \:  x_1 =  - 2 \: , \:  \: x_2 \:  = 4\\  \\ y_1 = 1 ,\: y_2 = 6 \\

Then,

AB \:  =  \sqrt{ {(4 - ( - 2))}^{2}  +  {(6 - 1)}^{2} }  \\  \\ AB \:  =  \sqrt{36 + 25}    \\  \\ \boxed{ AB \:  =  \sqrt{61} } \: ......(1)

Now find distance between B and C ,

 BC \:  =  \sqrt{ {(6 - 4)}^{2} + {( - 3 - 6)}^{2}   }  \\  \\ BC \:  =  \sqrt{4 + 81}   \\   \\  \boxed{ BC \:  =  \sqrt{85} } \:  \:  \: .......(2) \\

Now find distance between C and A

CA \:  =  \sqrt{ { \big(6 - ( - 2) \big)}^{2} +  {( - 3 - 1)}^{2}  }  \\  \\ CA\:  =  \sqrt{64 + 16}  \\  \\  \boxed{CA \:  =  \sqrt{80} } \:  \:  \: .... ....(3)

Now ,From eq.(1) ,(2) and (3)

We get ,

Perimeter of triangle

→ √(61) + √(85) +√(80)

_____________________________

Answered by SparklingBoy
6

Answer:

Given that vertices of a triangle are A(-2,1) ; B(4,6) and C(6,-3) and we have to calculate the perimeter of the triangle .

As, we know that perimeter of the triangle is equal to sum of sum of length of all the three sides .

So,

 perimeter \: of \: \triangle \\ = AB + BC + AC

Now, using distance formula

AB = \sqrt{ { {(4 + 2) }^{2} + (6 - 1)}^{2} } \\ \\ AB = \sqrt{36 + 25} \\ \\ AB = \sqrt{61}

And

BC = \sqrt{ {(6 - 4)}^{2} + {( - 3 - 6)}^{2} } \\ \\ BC = \sqrt{4 + 81} \\ \\ BC = \sqrt{85}

And

AC = \sqrt{ {( - 2 - 6)}^{2} + {(1 + 3)}^{2} } \\ \\AC = \sqrt{64 + 16} \\ \\AC = \sqrt{80} \\ \\ AC = 2 \sqrt{20}

So,

perimeter \: of \: \triangle \\ = \sqrt{61} + \sqrt{85} + 2 \sqrt{20}

Similar questions