Math, asked by Krunaldhalani474, 1 year ago

If √2 = 1.414 and √ 3 = 1.732 then find 4/3√3-2√2 +3/3√3+2√2

Answers

Answered by DaIncredible
4
Hey friend,
Here is the answer you were looking for:
 \frac{4}{3 \sqrt{3} - 2 \sqrt{2}  }  +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{4}{3 \sqrt{3} - 2 \sqrt{2}  }  \times  \frac{3 \sqrt{3}  + 2 \sqrt{2} }{3 \sqrt{3}  + 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2} }  \times  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{3 \sqrt{3}  - 2 \sqrt{2} }  \\  \\  using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{4 \times 3 \sqrt{3}  + 4 \times 2 \sqrt{2} }{ {(3 \sqrt{3}) }^{2} -  {(2 \sqrt{2}) }^{2}  }  +  \frac{3 \times 3 \sqrt{3} - 3 \times 2 \sqrt{2}  }{ {(3 \sqrt{3}) }^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} }{27 - 8}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{27 - 8}  \\  \\  =  \frac{12 \sqrt{3} + 8 \sqrt{2}   + 9 \sqrt{3}  - 6 \sqrt{2} }{19}  \\  \\  =  \frac{21 \sqrt{3}  + 2 \sqrt{2} }{19}  \\  \\  =  \frac{21 \times 1.732 + 2 \times 1.414}{19}  \\  \\  =  \frac{36.372 + 2.828}{19}  \\  \\  =  \frac{39.2}{19}

Hope this helps!!!!

@Mahak24

Thanks...
☺☺
Similar questions