Math, asked by kumarisuman36132, 10 months ago

if 2√3-√5|4√3-3√5=x-√15y find x and y.​

Answers

Answered by 3altafsiddique
5

Answer:

have fun with this answer is 100 taka correct u can trust me .... always help the needy one.... enjoy

Attachments:
Answered by payalchatterje
0

Answer:

Required value of x is 13 and value of y is3 \frac{1}{3}

Step-by-step explanation:

Given,

 \frac{2 \sqrt{3}  -  \sqrt{5} }{4 \sqrt{3}  - 3 \sqrt{5} }  =  x -  \sqrt{15} y.....(1)

Now,

 \frac{2 \sqrt{3}  -  \sqrt{5} }{4 \sqrt{3}  - 3 \sqrt{5} } =\frac{(2 \sqrt{3}  -  \sqrt{5}) (4 \sqrt{3}  - 3 \sqrt{5})}{(4 \sqrt{3}  - 3 \sqrt{5})( 4 \sqrt{3}   + 3 \sqrt{5})} =\frac{24 - 6 \sqrt{15}  - 4 \sqrt{15}  + 15}{ {(4 \sqrt{3)} }^{2}  -  {(3 \sqrt{5)} }^{2} } = \frac{39 - 10 \sqrt{15} }{3}

From equation (1),

 \frac{39 - 10 \sqrt{15} }{3}  = x -  \sqrt{15} y

 \frac{39}{3}  -  \frac{10}{3}  \sqrt{15} = x -  \sqrt{15}  y

We are comparing both side and get,

x =  \frac{39}{3}  = 13

and y =  \frac{10}{3}  = 3 \frac{1}{3}

Here applied formulas are,

 1.{x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\ 2. \sqrt{x}  \times  \sqrt{x}  = x \\ 3. \sqrt{x}  \times  \sqrt{y}  =  \sqrt{xy}

Some other important formulas of power of indices,

1.{x}^{0}  = 1 \\  2.{x}^{1}  = x \\  3.{x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \\  4.\frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b} \\ 5. {x}^{ {y}^{a} }   =  {x}^{ya}  \\  6.{x}^{ - 1}  =  \frac{1}{x}  \\ 7. {x}^{a}  \times  {y}^{a}  =  {(xy)}^{a}

Similar questions