Math, asked by abp31183, 2 months ago

If

2/3

and −

1/2

are solutions of quadratic equation 6x2 + ax − b = 0; find the values of a and b.​

Answers

Answered by acharyadipesh19
0

Solution,

Given,

x= -\frac{1}{2}    {for positive(+) in quadratic equation}

x= \frac{2}{3}        {for negative(-) in quadratic equation}

equation: 6x^2+ax-b=0

(a, b)=?

_______________________________________________________

now,

comparing 6x^2+ax-b=0 with ax^2+bx+c=0, we get;

a= 6, b=a, c=-b

Then,

Applying quadratic equation formula, we get;

x=\frac{-b \frac{+}{} (\sqrt{b^2-4ac})} {2a}

  = \frac{-a\frac{+}{}(\sqrt{a^2-4*6*(-b)})}{2*6}

 =\frac{-a\frac{+}{}(\sqrt{a^2+24b})}{12}

now ,

taking(+), we get;

x = \frac{-a+(\sqrt{a^2+24b})}{12}

or, -\frac{1}{2} = \frac{-a+(\sqrt{a^2+24b})}{12}           [when x=-\frac{1}{2}]

or, -6 = -a+(\sqrt{a^2+24b})}

or, a-6= (\sqrt{a^2+24b})

squaring on both side, we get;

or, (a-6)^2 = (\sqrt{a^2+24b})^2

or, a^2-2*a*6+6^2= a^2+24b

or, 36-12a= 24b

or12(3-a)=12*2b

or, 3-a=2b

:. a=3-2b----------------------(I)

--------------------------------------------------------------------------------------------------\

Taking(-), we get;

x= \frac{-a-(\sqrt{a^2+24b})}{12}

or, \frac{2}{3}=\frac{-a+(\sqrt{a^2+24b})}{12}                         [ when x= \frac{2}{3}]

or, 8= -[a+(\sqrt{a^2+24b})]

or,-8= a+(\sqrt{a^2+24b})

or,-8-a=(\sqrt{a^2+24b})

squaring on both side, we get;

or, (-8-a)^2=(\sqrt{a^2+24b})^2

or, 64+2*8*a+a^2= a^2+24b

or, 64+16a=24b

or, 8(8+2a)=8*3b

or, 8+2a=3b

or, 8+2(3-2b)=3b

or, 8+6-4b=3b

or, 14=4b+3b

or, 14=7b

:. b= 2

_____________________________________________________

Again,

Inserting value of b in equation (I), we get;

a=3-2*2

 =3-4

:.a= -1

____________________________________________________

Thus, (a, b) is (-1, 2)

_____________________________________________________

Similar questions