If
2/3
and −
1/2
are solutions of quadratic equation 6x2 + ax − b = 0; find the values of a and b.
Answers
Solution,
Given,
x= {for positive(+) in quadratic equation}
x= {for negative(-) in quadratic equation}
equation:
(a, b)=?
_______________________________________________________
now,
comparing with , we get;
a= 6, b=a, c=-b
Then,
Applying quadratic equation formula, we get;
=
=
now ,
taking(+), we get;
x =
or, = [when x=]
or, -6 =
or, a-6=
squaring on both side, we get;
or,
or,
or, 36-12a= 24b
or12(3-a)=12*2b
or, 3-a=2b
:. a=3-2b----------------------(I)
--------------------------------------------------------------------------------------------------\
Taking(-), we get;
x=
or, [ when x= ]
or, 8=
or,-8= a+
or,-8-a=
squaring on both side, we get;
or,
or, 64+2*8*a+
or, 64+16a=24b
or, 8(8+2a)=8*3b
or, 8+2a=3b
or, 8+2(3-2b)=3b
or, 8+6-4b=3b
or, 14=4b+3b
or, 14=7b
:. b= 2
_____________________________________________________
Again,
Inserting value of b in equation (I), we get;
a=3-2*2
=3-4
:.a= -1
____________________________________________________
Thus, (a, b) is (-1, 2)
_____________________________________________________