Math, asked by bagavathi2004, 1 year ago

if 2+√3 = x, find x^2 + 1/x^2


bagavathi2004: help me.fast..

Answers

Answered by MitheshShankar
2
x = 2 + \sqrt{3}

so we have to find the value of  x^{2} + \frac{1}{ x^{2} }

it is in the form of  a^{2}+  b^{2} = (a+b) ^{2} - 2ab

so,

      (x+ \frac{1}{x} ) ^{2} - 2 (x( \frac{1}{x}))

    =  (\frac{ x^{2}+1 }{x} ) ^{2} -2

    now substitute x value 

=   ( \frac{(2+ \sqrt{3} ) ^{2} +1}{2+ \sqrt{3} } ) ^{2} - 2

 (\frac{8+ \sqrt{3} }{2 +\sqrt{3} }) ^{2}  -2

( \frac{4(2+ \sqrt{3}) }{2+ \sqrt{3} } ) ^{2} -2

=4 ^{2} -2

= 16-2 

= 14

MitheshShankar: mark me as brainliest please
MitheshShankar: thank you
Similar questions