Math, asked by adetunjisamuel2000, 9 months ago

If (2 + 3i) (5 - 3i) (-4 - 7i) =


x + 2yi , find the value of x and y

Answers

Answered by BrainlyPopularman
8

Question :

 { \huge {.}} { \bold{  If \: \:(2 + 3 \iota) (5 - 3 \iota ) (-4 - 7 \iota) = x + (2y) \iota}}  \:  \:  then find the value of x and y .

ANSWER :

GIVEN :

▪︎    \:  \:  { \bold{ (2 + 3 \iota) (5 - 3 \iota ) (-4 - 7 \iota) = x + (2y) \iota}}  \:  \:

TO FIND :

▪︎ Value of x and y.

SOLUTION :

   \\  \implies { \bold{ (2 + 3\iota) (5 - 3\iota) (-4 - 7\iota) = x + (2y)\iota}}  \\

   \\  \implies { \bold{ [10 - 6\iota + 15\iota - 9 {\iota}^{2} ] (-4 - 7\iota) = x + (2y)\iota}}  \\

   \\  \implies { \bold{ [10  + 9\iota  - 9 {\iota}^{2} ] (-4 - 7\iota) = x + (2y)\iota}}  \\

 \\  \rule {210}{1} \\

Let know about "iota"

   \\  {  \blue{\bold{  \:  \:  \:  \:   \:  \: \:  \:  \: . \:  \:  \iota =  \sqrt{ - 1} }}}  \\

   \\  {  \blue{\bold{  \:  \:  \:  \:   \:  \: \:  \:  \: . \:  \:  {\iota}^{2}  =  { - 1} }}}  \\

   \\  {  \blue{\bold{  \:  \:  \:  \:   \:  \: \:  \:  \: . \:  \:  {\iota}^{3}  =  -  \iota }}}  \\

   \\  {  \blue{\bold{  \:  \:  \:  \:   \:  \: \:  \:  \: . \:  \:  {\iota}^{4}  =  1}}}  \\

 \\  \rule {210}{1} \\

• So that –

   \\  \implies { \bold{ [10  + 9\iota  - 9 ( - 1) ] (-4 - 7\iota) = x + (2y)\iota}}  \\

   \\  \implies { \bold{ [10  + 9\iota   + 9 ] (-4 - 7\iota) = x + (2y)\iota}}  \\

   \\  \implies { \bold{ [19  + 9\iota    ] (-4 - 7\iota) = x + (2y)\iota}}  \\

   \\  \implies { \bold{ [19( - 4) + 19( - 7 \iota) + 9 \iota( - 4) + 9 \iota( - 7 \iota)] = x + (2y)\iota}} \\

   \\  \implies { \bold{ [ - 76  - 133 \iota - 36 \iota - 63{ \iota}^{2} ] = x + (2y)\iota}} \\

   \\  \implies { \bold{ [ - 76  - 133 \iota - 36 \iota - 63( - 1)] = x + (2y)\iota}} \\

   \\  \implies { \bold{ (- 13 - 169 \iota ) = x + (2y)\iota}} \\

• Now compare real and imaginary part –

   \\  \implies { \bold{ x  = - 13  \:  \:  \:  \: and \:  \:  \:  \: 2y = - 169 \iota}} \\

   \\  \implies { \bold{ x  = - 13  \:  \:  \:  \: and \:  \:  \:  \: y = \frac {- 169 \iota}{2}}} \\

 \rule {220}{4}

Similar questions