Math, asked by debumithi, 2 days ago

If 2^4 x 4^3 = 4^x, then value of x is.

a) 5 (b) 7 c)4 d)-5. step by step pls​

Answers

Answered by itsKeshavSingh
1

Answer:

5

Mark as brainliest answer.

Step-by-step explanation:

2^4 x 4^3 = 4^x

4^2 x 4^3 = 4^x

4^5 = 4^x

x=5

Answered by anindyaadhikari13
13

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto {2}^{4} \times  {4}^{3} =  {4}^{x}

 \rm: \longmapsto {2}^{4} \times  {( {2}^{2} )}^{3} =  {4}^{x}

 \rm: \longmapsto {2}^{4} \times  ( {2}^{2 \times 3} ) =  {4}^{x}

 \rm: \longmapsto {2}^{4} \times  {2}^{6} =  { ({2}^{2}) }^{x}

 \rm: \longmapsto {2}^{4 + 6} =  {2}^{2x}

 \rm: \longmapsto {2}^{10} =  {2}^{2x}

Comparing base, we get:

 \rm: \longmapsto 2x = 10

 \rm: \longmapsto x = 5

★ So, the value of x is 5.

\textsf{\large{\underline{Learn More}:}}

Laws Of Exponents: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions