If = 2−√5 2+√5 and = 2+√5 2−√5 , find a^2 + b^2
Answers
I think question is like this
a = ( 2 - √5 )/ (2 + √5 ) and
b = ( 2 + √5 ) / (2 - √5 ) then find a² + b²
Solution --->
a = (2 - √5 ) / ( 2 + √ 5 )
Now multiplying in numerator and denominator by ( 2 - √5 ) we get
a = (2 - √5 )(2 - √5 )/(2 + √5 ) ( 2 - √5 )
= ( 2 - √ 5 )² / (2)² - (√5)²
We have a identity a² - b² =(a + b)(a -b )
applying it here we get.
= ( 2 - √5 )² / ( 4 - 5 )
We have an identity
(a - b )² = a² + b² -2ab ,applying it
= (2)² + (√5 )² - 2 (2)(√5) / (-1)
= - (4 + 5 - 4√5)
= - (9 - 4√5)
= 4√5 - 9
Now
b = ( 2+√5) / (2- √5)
Multiplying by (2 + √5 ) in numerator and denominator we get
b= (2 + √5)(2 + √5) / (2 - √5)(2 + √5)
= ( 2 + √5 )² / (2)² - (√5)²
We have an identity
(a + b )² = a² + b² +2ab ,applying it we get
= (2)² +(√5)² +2(2)(√5) /( 4 - 5)
= 4 + 5 + 4 √5 / (-1)
= - ( 9 + 4 √5 )
Now
a² + b² = (4√5 - 9)² + { - (9 + 4 √5) }²
=(4√5)² + (9)² - 2(4√5)(9) +(9)² +(4√5)²
+2(9) (4√5)
=80 + 81 -72√5 +81 + 80 + 72√5
-72√5 and +72√5 cancel out each other
and we get
= 322
Answer:
Step-by-step explanation:
if
a = (2-√5)/(2+√5)
b = (2+√5)/(2-√5)
⇒ a = (2-√5)/(2+√5) × (2-√5)/(2-√5)
⇒ (4-4√5+5)/(4-5)
⇒ (9-4√5)/-1
⇒ a = -9+4√5
⇒ b = (2+√5)/(2-√5) × (2+√5)/(2+√5)
⇒ (4+4√5+5)/(4-5)
⇒ (9+4√5)/-1
⇒ b = -9-4√5
⇒ a² - b² = (-9+4√5)² - (-9-4√5)
⇒ 81+80-72√5 - (81+80+72√5)
⇒ 81+80-72√5-81-80-72√5
⇒ -72√5-72√5
a² - b² = -144√5