Math, asked by mridulthakurr007, 19 days ago

if (2-√5)+(3+2√5)-(4+5)/4=p+q√5 find the value of p and q​

Answers

Answered by karishma941
0

Step-by-step explanation:

\tt{ \implies \: \frac{ (2- \sqrt{ 5 } )+(3+2 \sqrt{ 5 } )-(4+ \sqrt{ 5 } ) }{ 4 } =p+q \sqrt{ 5 }}⟹4(2−5)+(3+25)−(4+5)=p+q5

\tt{ \implies \:2-\sqrt{5}+3+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹2−5+3+25−(4+5)=4p+4q5

\tt{ \implies \:5-\sqrt{5}+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹5−5+25−(4+5)=4p+4q5

\tt{ \implies \:5+\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹5+5−(4+5)=4p+4q5

\tt{ \implies5+\sqrt{5}-4-\sqrt{5}=4p+4q\sqrt{5} }⟹5+5−4−5=4p+4q5

\tt{ \implies \: 1+\sqrt{5}-\sqrt{5}=4p+4q\sqrt{5} }⟹1+5−5=4p+4q5

\tt{ \implies \: 1=4p+4q\sqrt{5} }⟹1=4p+4q5

\tt{ \implies \: 4p=1-4q\sqrt{5} }⟹4p=1−4q5

\tt{ \implies \:\frac{4p}{4}=\frac{-4\sqrt{5}q+1}{4} }⟹44p=4−45q+1

\tt{ \implies \:p=-\sqrt{5}q+\frac{1}{4} }⟹p=−5q+41

Answer:

Step-by-step explanation:

hope it help you.

thanks

Answered by surywanshiprem6
0

Answer:

Step-by-step explanation:

\tt{ \implies \: \frac{ (2- \sqrt{ 5 } )+(3+2 \sqrt{ 5 } )-(4+ \sqrt{ 5 } ) }{ 4 } =p+q \sqrt{ 5 }}⟹

4

(2−

5

)+(3+2

5

)−(4+

5

)

=p+q

5

\tt{ \implies \:2-\sqrt{5}+3+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹2−

5

+3+2

5

−(4+

5

)=4p+4q

5

\tt{ \implies \:5-\sqrt{5}+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹5−

5

+2

5

−(4+

5

)=4p+4q

5

\tt{ \implies \:5+\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5} }⟹5+

5

−(4+

5

)=4p+4q

5

\tt{ \implies5+\sqrt{5}-4-\sqrt{5}=4p+4q\sqrt{5} }⟹5+

5

−4−

5

=4p+4q

5

\tt{ \implies \: 1+\sqrt{5}-\sqrt{5}=4p+4q\sqrt{5} }⟹1+

5

5

=4p+4q

5

\tt{ \implies \: 1=4p+4q\sqrt{5} }⟹1=4p+4q

5

\tt{ \implies \: 4p=1-4q\sqrt{5} }⟹4p=1−4q

5

\tt{ \implies \:\frac{4p}{4}=\frac{-4\sqrt{5}q+1}{4} }⟹

4

4p

=

4

−4

5

q+1

\tt{ \implies \:p=-\sqrt{5}q+\frac{1}{4} }⟹p=−

5

q+

4

1

Answer:

Step-by-step explanation:

hope it help you.

thanks

Similar questions