Math, asked by cherrybear05, 8 months ago

If 2 is a root of the quadratic equation 3x^{2} +px-8=0 and the quadratic equation 4x^{2} -2px+k=0 has equal roots. Find the value of k

Answers

Answered by BrainlyPopularman
2

ANSWER :

  \\   {  \boxed{\bold{ {  k = 1 }}}} \\

EXPLANATION :

GIVEN :

▪︎ 2 is a root of the quadratic equation 3x^{2} + px - 8 = 0 \\

▪︎ And the quadratic equation 4x^{2} -2px+k=0 has equal roots.

TO FIND :

▪︎ Value of 'x'

SOLUTION :

2 is a root of the quadratic equation  { \bold { 3x^{2} + px - 8 = 0}} \\

• Now x = 2 will satisfy the equation –

=> 3(2)² + p(2) - 8 = 0

=> 3(4) + 2p - 8 = 0

=> 12 - 8 + 2p = 0

=> 2p + 4 = 0

=> p = -2

Quadratic equation { \bold{4x^{2} -2px+k=0}} has equal roots .

• Now put p = -2 in given equation –

 \\  \implies{ \bold{4x^{2}  + 4x+k=0}} \\

• Let the roots are a and a.

  \\  \implies{ \bold{sum \:  \: of \:  \: roots =  -  \frac{b}{a} }} \\

  \\  \implies{ \bold{a + a =  -  \frac{4}{4} }} \\

  \\  \implies{ \bold{2a =  - 1 }} \\

  \\  \implies{ \bold{a =  -  \frac{1}{2}  }} \\

  \\  { \bold{ \:  \:  \:  \: . \:  \: product \:  \: of \:  \: roots \: =   \frac{c}{a}   }} \\

  \\  \implies { \bold{ {a}^{2} =   \frac{k}{4}   }} \\

• Now put the value of 'a'

  \\  \implies { \bold{ { (-  \frac{1}{2}) }^{2} =   \frac{k}{4}   }} \\

  \\  \implies { \bold{ {   \frac{1}{4}}=   \frac{k}{4}   }} \\

  \\  \implies {  \boxed{\bold{ {  k = 1 }}}} \\

Similar questions