If 2 is added to the numerator of a fraction it reduces to 1/2 and if 1 is subtracted from the denominator it reduces to 1/3. Find the fraction.
Answers
Answered by
195
Let the fraction be x/y
Given that
x+2/y =1/2 -----> equ i
x/y-1 =1/3 -----> equ ii
From i and ii
2(x+2) =1(y) -------> equ i
3(x) =1(y-1) -------> equ ii
=> 2x+4=y
3x=y-1
Subtract i and ii. we get
2x - y = -4
3x - y = -1
(-) (+) = (+)
______________
-x = -3
_____________
=> x=3
subtitute x=3 in equ i. we get
2(3+2)=y
=> 2(5) =y
=> y=10
Therefore the value of x and y are 3 and 10 respectively.
Given that
x+2/y =1/2 -----> equ i
x/y-1 =1/3 -----> equ ii
From i and ii
2(x+2) =1(y) -------> equ i
3(x) =1(y-1) -------> equ ii
=> 2x+4=y
3x=y-1
Subtract i and ii. we get
2x - y = -4
3x - y = -1
(-) (+) = (+)
______________
-x = -3
_____________
=> x=3
subtitute x=3 in equ i. we get
2(3+2)=y
=> 2(5) =y
=> y=10
Therefore the value of x and y are 3 and 10 respectively.
Attachments:
Answered by
137
Given,
= ...............(1)
= .................(2)
(1) ⇒ 2x+4 = y
⇒2x-y+4 = 0
(2) ⇒ 3x = y-1
⇒ 3x-y+1 = 0
solving the equations
3x-y+1 = 0
2x-y+4 = 0
---------------
x-3 = 0
x = 3
substitute x value in any of the above equation,
6-y+4 = 0
y = 10
= ...............(1)
= .................(2)
(1) ⇒ 2x+4 = y
⇒2x-y+4 = 0
(2) ⇒ 3x = y-1
⇒ 3x-y+1 = 0
solving the equations
3x-y+1 = 0
2x-y+4 = 0
---------------
x-3 = 0
x = 3
substitute x value in any of the above equation,
6-y+4 = 0
y = 10
Similar questions