Math, asked by chpriya1994, 2 months ago

If 2 is the logarithm of a number to the base √3, then find out the logarithm of the same number for the base 3√3? 

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{2 is the logarithm of a number to the base}\;\mathsf{\sqrt{3}}

\underline{\textbf{To find:}}

\textsf{logarithm of the same number for the base}\;\mathsf{3\sqrt{3}}

\underline{\textbf{Solution:}}

\textsf{Let the number be x}

\mathsf{As\;per\;given\;data,}

\mathsf{log\,_{\sqrt3}\,x=2}

\implies\mathsf{x=(\sqrt3)^2}

\implies\mathsf{x=3}

\mathsf{Now,}

\mathsf{log\,_{3\sqrt3}\,x=y\;\;(say)}

\implies\mathsf{(3\sqrt3)^y=x}

\implies\mathsf{(\sqrt3\sqrt3\sqrt3)^y=3}

\implies\mathsf{((\sqrt3)^3)^y=(\sqrt3)^2}

\implies\mathsf{(\sqrt3)^{3y}=(\sqrt3)^2}

\textsf{Equating powers on bothsides, we get}

\mathsf{3y=2}

\mathsf{y=\dfrac{2}{3}}

\implies\boxed{\mathsf{log\,_{3\sqrt3}\,3=\dfrac{2}{3}}}

Similar questions
Math, 10 months ago