Math, asked by Chaturvarma21, 10 months ago

If -2 < x ≤ 3 then find the interval in which 2-3x lies.​

Answers

Answered by abhi178
18

it is given that -2 < x ≤ 3 then we have to find the interval in which 2 - 3x lies

-2 < x ≤ 3

when we change sign of x, sign of inequality change as shown below.

a ≤ x ≤ b ⇒-a ≥ -x ≥ - b

so, -2 < x ≤ 3 ⇒-(-2) > -x ≥ -3

⇒2 > -x ≥ -3

⇒-3 ≤ -x < 2

⇒ -3 × 3 ≤ -3x < 3 × 2

⇒-9 ≤ -3x < 6

⇒2 - 9 ≤ 2 - 3x < 2 + 6

⇒-7 ≤ 2 - 3x < 8

therefore, [-7, 8) is the interval in which 2 - 3x lies.

Answered by Anonymous
2

 - 2 &lt; x \leqslant 3

a \leqslant x \leqslant b↬-a  \geqslant  - x \geqslant  - b

 - 2 &gt;  - x &gt;  - 3

 - 3 \leqslant  - x \leqslant 2

 - 3 \times 3 \leqslant  - 3x &lt; 3 \times 2

 - 9 \leqslant  - 3x &lt; 6

2 - 9 \leqslant 2 - 3x &lt; 2 + 6

 - 7 \leqslant 2 - 3x &lt; 8

( - 7 \: 8) \: is \: the \: interval \: in \: which \: 2 - 3x \: lies

Similar questions