Math, asked by jyotisharma2, 1 year ago

if 2 power x=5 power y= 10 power z then prove that 1/x +1/y= 1/z please help me to solve this question

Attachments:

Answers

Answered by rahul117224
40
this is answer for question
Attachments:
Answered by erinna
14

Answer:

\frac{1}{x}+\frac{1}{y}=\frac{1}{z}

Step-by-step explanation:

Given: 2^x=5^y=10^z

Prove: \frac{1}{x}+\frac{1}{y}=\frac{1}{z}

Proof:

Let 2^x=5^y=10^z=k

2^x=k

Taking log both sides.

\log 2^x=\log k

x\log 2=\log k                [\because \log a^x=x\log a]

Isolate variable term.

x=\frac{\log k}{\log 2}

After reciprocal we get

\frac{1}{x}=\frac{\log 2}{\log k}

Similarly,

\frac{1}{y}=\frac{\log 5}{\log k}

\frac{1}{z}=\frac{\log 10}{\log k}

We need to prove,

\frac{1}{x}+\frac{1}{y}=\frac{1}{z}

LHS=\frac{1}{x}+\frac{1}{y}

LHS=\frac{\log 2}{\log k}+\frac{\log 5}{\log k}

LHS=\frac{\log 2+\log 5}{\log k}         [\because \log a+\log b=\log ab]

LHS=\frac{\log 10}{\log k}

LHS=\frac{1}{z}

LHS=RHS

Hence proved.

Similar questions