Math, asked by rohanchaudhary8297, 1 year ago

If √2 sin θ = 1, find the value of sec^2 θ - cosec^2 θ.

Answers

Answered by yashchaudhary841
3

Answer:


Step-by-step explanation:

Pls mark me brainliest....

Hope it will help you........................

Attachments:
Answered by krunali01
1

 \sqrt{2 }\sin( \alpha )  = 1 \\  \sin( \alpha )  = 1 \div  \sqrt{2}  \\ \csc( \alpha )  =  \sqrt{2}  \div 1  \\ we \: know \: that \:  \\  \cos( \alpha )  = 1 \div  \sqrt{2} ....{.from \: trigo \: table \: } \\ therefor \: sec{ \alpha } =  \sqrt{2}  \div 1 \\  \\   \sec^{2} \alpha   - \csc^{2}  \alpha  =  \cos {}^2 (1 \div  \alpha ) -   \sin {}^{2} (1 \div  \alpha )   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  \:  \:  = 1 \div  \sqrt{2}  - 1 \div  \sqrt{2 }  = 0
I hope it will help you thank you
Similar questions