If 2^sin x+
+cos y =1, and 16^sin^2+cos^2y = 4, then values of sin x and cos y respectively are
Answers
Answered by
4
Step-by-step explanation:
Correct option is
C
x=nπ+(−1)
n
6
π
andy=2nπ±
3
2π
2
sinx+cosy
=1=2
0
⇒sinx+cosy=0…(1)
and 16
sin
2
x+cos
2
y
=4=16
2
1
sin
2
x+cos
2
y=
2
1
…(2)
Subsitute cosy=−sinx in equation (2) from equation (1)
sin
2
x+sin
2
x=
2
1
2sin
2
x=
2
1
⇒sinx=±
2
1
Now sinx=
2
1
⇒cosy=−
2
1
⇒x=nπ+(−1)
n
6
π
andy=2nπ±
3
2π
and sinx=−
2
1
⇒cosy=
2
1
x=nπ+(−1)
n+1
6
π
andy=2nπ±
3
π
Similar questions