Math, asked by muskaanchauhan20066, 7 months ago

if 2
 {2}^{a \:  }  =  {3}^{b}  =  {6}^{ - c}  \\ prove \: that \:  \frac{1}{a} +  \frac{1}{b} +  \frac{1}{c}  = 0

Answers

Answered by EuphoricEpitome
15

Given -:

 2^a = 3^b = 6^{-c}

To prove -:

 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0

Solution -:

Assume

 2^a = 3^b = 6^{-c} = K

 2^a = K ; 2 = K ^{\frac{1}{a}}

(by multiplying 1/a to the powers on both sides)

 3^b  = K , 3 = K ^{\frac{1}{b}}

 6^{-c} = K , 6 = K ^{- \frac{1}{c}}

We know that ,

6 = 2 × 3

by putting the values in terms of K

 K^{-\frac{1}{c}} = K^{\frac{1}{a}} \times K^{\frac{1}{b}}

by applying the laws of exponents

 a^m \times a^n = a^{m+n}

 K^{-\frac{1}{c}} = K^{\frac{1}{a} + \frac{1}{b}}

we know that, when the base is same power also becomes equal.

 -\frac{1}{c} = \frac{1}{a} + \frac{1}{b}

by transposing

\purple{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0}

Hence proved .


Vamprixussa: Splendid !
Answered by aishi2020
6

2^a = 3^b = 6^{-c} = K2 </p><p>a</p><p> =3 </p><p>b</p><p> =6 </p><p>−c</p><p> =K</p><p>

2^a = K ; 2 = K ^{\frac{1}{a}}2 </p><p>a</p><p> =K;2=K </p><p>a</p><p>1</p><p>	</p><p>

(by multiplying 1/a to the powers on both sides)

3^b = K , 3 = K ^{\frac{1}{b}}3 </p><p>b</p><p> =K,3=K </p><p>b</p><p>1</p><p>

6^{-c} = K , 6 = K ^{- \frac{1}{c}}6 </p><p>−c</p><p> =K,6=K </p><p>− </p><p>c</p><p>1</p><p>	</p><p> </p><p>

We know that ,

6 = 2 × 3

Let the values be in terms of K

 K^{-\frac{1}{c}} = K^{\frac{1}{a}} \times K^{\frac{1}{b}}K </p><p>− </p><p>c</p><p>1</p><p>	</p><p> </p><p> =K </p><p>a</p><p>1</p><p>	</p><p> </p><p> ×K </p><p>b</p><p>1</p><p>	</p><p> </p><p>

by applying the laws of exponents

</p><p>a^m \times a^n = a^{m+n}a </p><p>m</p><p> ×a </p><p>n</p><p> =a </p><p>m+n</p><p>

</p><p>K^{-\frac{1}{c}} = K^{\frac{1}{a} + \frac{1}{b}}K </p><p>− </p><p>c</p><p>1</p><p>	</p><p> </p><p> =K </p><p>a</p><p>1</p><p>	</p><p> + </p><p>b</p><p>1</p><p>	</p><p> </p><p>

As we know, when the base is same power also becomes equal.

 -\frac{1}{c} = \frac{1}{a} + \frac{1}{b}− </p><p>c</p><p>1</p><p>	</p><p> = </p><p>a</p><p>1</p><p>	</p><p> + </p><p>b</p><p>1</p><p>

by transposing

 \purple{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0} </p><p>a</p><p>1</p><p>	</p><p> + </p><p>b</p><p>1</p><p>	</p><p> + </p><p>c</p><p>1</p><p>	</p><p> =0 (proved)</p><p></p><p>

Similar questions