if 2 vertex of an eqilateral tirangle are 3,0 and 6,0 find the third vertx
Answers
Step-by-step explanation:
Let , the two vertex of equilateral triangle be A ( 3 , 0 ) and B ( 6 , 0 )
The distance between them is 3 units.
Use distance formula ,
d^2 =
Again ,
Taking A ( 3 , 0 ) = A ( x1 , y1 )
C ( x2 , y2 )
Now you can take it from here.
<( ̄︶ ̄)↗
Answer:
A(3,0) and B(6,0)B(6,0), let third vertex C(a,b)C(a,b)
=>AB^{ 2 }={ BC }^{ 2 }={ CA }^{ 2 }\\ =>{ (3) }^{ 2 }+{ (0) }^{ 2 }={ (3-a) }^{ 2 }+{ b }^{ 2 }={ (6-a) }^{ 2 }+{ b }^{ 2 }\\ =>a^{ 2 }-6a+9+{ b }^{ 2 }=36+{ a }^{ 2 }-12a+{ b }^{ 2 }=9\\ =>a=\cfrac { 27 }{ 6 } \\ =>b=\left( \cfrac { 3 }{ 2 } \right) ^{ 2 }-(3)^{ 2 }\\ =>b=-\cfrac { 27 }{ 4 } \\=>AB
2
=BC
2
=CA
2
=>(3)
2
+(0)
2
=(3−a)
2
+b
2
=(6−a)
2
+b
2
=>a
2
−6a+9+b
2
=36+a
2
−12a+b
2
=9
=>a=
6
27
=>b=(
2
3
)
2
−(3)
2
=>b=−
4
27
So, C\left( \cfrac { 9 }{ 2 } ,-\cfrac { 27 }{ 4 } \right)C(
2
9
,−
4
27
)