Math, asked by harshitha6442, 8 months ago

If (2^x)+(2^x+1)+(2^X+2)+................+(2^x+10)=2047, then possible value of X is:

Answers

Answered by MaheswariS
4

\underline{\textsf{Given:}}

\mathsf{2^x+2^{x+1}+2^{x+2}+.....+2^{x+10}=2047}

\underline{\textsf{To find:}}

\textsf{The value of x}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{2^x+2^{x+1}+2^{x+2}+.....+2^{x+10}=2047}

\mathsf{2^x+2^x2^1+2^x2^2+.....+2^x2^{10}=2047}

\mathsf{2^x(1+2^1+2^2+.....+2^{10})=2047}

\mathsf{2^x(\dfrac{a(r^n-1)}{r-1})=2047}

\mathsf{2^x(\dfrac{1(2^{11}-1)}{2-1})=2047}

\mathsf{2^x(\dfrac{(2048-1)}{1})=2047}

\mathsf{2^x(2047)=2047}

\mathsf{2^x=1}

\implies\boxed{\mathsf{x=0}}

\underline{\textsf{Answer:}}

\textsf{The value of x is 0}

Similar questions