Math, asked by ipseetapratihari4, 1 month ago

if 2^x - 2^x-1 = 4 then find the value of x^x​

Answers

Answered by nsingh13782
2

Here is your answer

Please mark me as brainlist

Attachments:
Answered by Anonymous
2

Answer:

  • \displaystyle  \color{red} \boxed{ {x}^{x}  = 27}

Step-by-step explanation:

Given,

  •  \displaystyle{ {2}^{x}  -  {2}^{x - 1} } = 4

To Find,

  •  \displaystyle{ {x}^{x}  =  \:  ? }

Solution,

 \displaystyle:\implies { {2}^{x}  -  {2}^{x - 1} } = 4 \\  \\ \displaystyle:\implies   {2}^{x} -  \frac{ {2}^{x} }{2}  = 4 \\  \\ \displaystyle:\implies  {2}^{x} (1 -  \frac{1}{2} ) = 4 \\  \\ \displaystyle:\implies  {2}^{x}  ( \frac{1}{2}) =  4 \\  \\ \displaystyle:\implies  {2}^{x}  = 8 \\  \\\displaystyle:\implies  {2}^{x}  =  {2}^{3}  \\  \\ \displaystyle:\implies   \color{red}  \boxed{x = 3}

Putting This value of x in x^x,

\displaystyle:\implies  {x}^{x}  =  {x}^{x}  \\  \\ \displaystyle:\implies  {x}^{x}  =  {(3)}^{(3)}  \\  \\ \displaystyle:\implies  \color{red} \boxed{ {x}^{x}  = 27}

Required Answer,

  • \displaystyle  \color{red} \boxed{ {x}^{x}  = 27}

Similar questions