Math, asked by bhardwajprashant543, 8 months ago

If 2^x=3^y=12^z ,prove that X=2yz/y-z​

Answers

Answered by Isighting12
11

Answer:

2^{x} = 3^{y} = 12^{z} = k

=> 2^{x} = k

2 =\sqrt[x]{k}

2 = k^{\frac{1}{x} }

=> 3^{y} = k

3 =\sqrt[y]{k}

3 = k^{\frac{1}{y} }

=> 12^{z} = k

12 =\sqrt[z]{k}

12 = k^{\frac{1}{z} }

and we know that 12 = 2^{2} * 3

putting the value of numbers that we found above

k^{\frac{1}{z} } = k^{\frac{2}{x} } * k^{\frac{1}{y} }

k^{\frac{1}{z} } = k^{\frac{2}{x} + \frac{1}{y} }

since the bases are same thus powers will also be same

\frac{1}{z} = \frac{2}{x} + \frac{1}{y}

\frac{1}{z} - \frac{1}{y} = \frac{2}{x}

\frac{y - z}{yz} = \frac{2}{x}

x(\frac{y - z}{yz}) = 2

x = \frac{2yz}{y - z}

Similar questions