if 2^x=3^y=6^-y then the value of 1/x+1/y+1/z
Answers
Answered by
10
Sᴏʟᴜᴛɪᴏɴ :-
Let us Assume that, 2^x=3^y=6^(-z) = k . where k is any constant Integer. (k ≠ 0) .
Than,
→ 2^x = k
→ 2 = k^(1/x)
Similarly,
→ 3^y = k
→ 3 = k^(1/y)
And,
→ 6^(-z) = k
→ 6 = k^(-1/z)
Now, since , 2 * 3 = 6 .
Putting values we get,
→ k^(1/x) * k^(1/y) = k^(-1/z)
using a^m * a^n = a^(m + n) in LHS,
→ k^(1/x + 1/y) = k^(-1/z)
Now, using , a^m = a^n => m = n
→ (1/x + 1/y) = (-1/z)
→ (1/x + 1/y + 1/z) = 0 (Ans.)
Answered by
13
Let ,
__________________________________
___________________________________
__________________________________
__________________________________
Since,
Put all the the values in this,
We know that ,
Hence proved!
Similar questions