Math, asked by SOHAMNERURKAR, 10 months ago

if 2^x=3^y=6^-y then the value of 1/x+1/y+1/z​

Answers

Answered by RvChaudharY50
10

Sᴏʟᴜᴛɪᴏɴ :-

Let us Assume that, 2^x=3^y=6^(-z) = k . where k is any constant Integer. (k ≠ 0) .

Than,

2^x = k

→ 2 = k^(1/x)

Similarly,

3^y = k

→ 3 = k^(1/y)

And,

6^(-z) = k

→ 6 = k^(-1/z)

Now, since , 2 * 3 = 6 .

Putting values we get,

k^(1/x) * k^(1/y) = k^(-1/z)

using a^m * a^n = a^(m + n) in LHS,

→ k^(1/x + 1/y) = k^(-1/z)

Now, using , a^m = a^n => m = n

→ (1/x + 1/y) = (-1/z)

→ (1/x + 1/y + 1/z) = 0 (Ans.)

Answered by Anonymous
13

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \star{\sf{ \green{  \:  \:  {2}^{x}  =  {3}^{y}  =  {6}^{ - z} }}} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

  \star{\sf{ \green{  \:  \: \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} }}} \\ \\

{\bf{\blue{\underline{Now:}}}}

Let ,

  \implies{\sf{ \:  \:  {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  = k(any \: constant)}} \\ \\

__________________________________

 : \implies{\sf{  {2}^{x} = k }} \\ \\

 : \implies{\sf{  {2}=  {k}^{ \frac{1}{x} }  }} \\ \\

___________________________________

 : \implies{\sf{  {3}^{y} = k }} \\ \\

 : \implies{\sf{  {3}=  {k}^{ \frac{1}{y} }  }} \\ \\

__________________________________

 : \implies{\sf{  {6}^{z} = k }} \\ \\

 : \implies{\sf{  {6}=  {k}^{ \frac{-1}{z} }  }} \\ \\

__________________________________

Since,

 : \implies{\sf{ 2 \times 3 = 6}} \\ \\

Put all the the values in this,

 : \implies{\sf{  {k}^{ \frac{1}{x}  } +  {k}^{ \frac{ 1}{y} }   = {k}^{ \frac{-1}{ z} }   }} \\ \\

We know that ,

  \bigstar  \:  \:  \underline{ \purple{  \boxed{ \sf{ {a}^{ \frac{p}{q} }  +  {a}^{ \frac{r}{s} } =  {a}^{ \frac{p}{q}  +  \frac{r}{s} }  }}}} \\ \\

 : \implies{\sf{  {(k})^{ \frac{1}{x} +  \frac{1}{y}  }  =  {k}^{ \frac{-1}{ z} } }} \\ \\

  \star \: {\sf{ Base \: same}} \\ \\

  \: {\implies{  \frac{1}{x}  +  \frac{1}{y} =  \frac{ - 1}{ z}  }} \\ \\

  \: {\implies{  \frac{1}{x}  +  \frac{1}{y} +  \frac{  1}{ z}  }} \\ \\

Hence proved!

Similar questions