Math, asked by ananditasingh4327, 1 month ago

if 2^x+3^y+6^-z ,find the value of 1/x+1/y+1/z​

Answers

Answered by TrustedAnswerer19
16

Answer:

Given,

 {2}^{x}  +  {3}^{y}  +  {6}^{ - z}

we assumed that,

 \:  \:  \:  \:   \sf \: {2}^{x}   =   {3}^{y}   = {6}^{ - z}  = k \\  \sf \therefore \:  {2}^{x}  = k \: \\  =  >  \sf \: 2 =  {k}^{ \frac{1}{x} } \:  \:  \:  \:   -  -  -  - (1) \\ \\  \sf \therefore \:  \:  {3}^{y}  = k \\  =  >  \sf \: 3 =  {k}^{ \frac{1}{y} }  \:  \:  \:  \:  -  -   -  - (2) \\  \\ \sf \therefore \:  {6}^{ - z}  = k \\  \sf \:  =  >  \frac{1}{6}  =  {k}^{ \frac{1}{z} }  \:  \:  \:  \:  \:  -  -  -  - (3) \\  \\ (1) \times (2) \times (3) \:  \:  \: \sf  \sf \: \implies \:  \:  \\   \sf \: {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{y} }  \times  {k}^{ \frac{1}{z} }  = 2 \times 3 \times  \frac{1}{6}  = 1 \\  \sf \: \implies \:  {k}^{( \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} )}  = 1 =  {k}^{0}  \\ \sf \therefore \:  \frac{1}{x} +  \frac{1}{y}  +  \frac{1}{z}  = 0

Note:

 >  \sf {a}^{m}  =  {a}^{n}  \: \:  \:  \:  \:  \:  \sf \therefore \:  \: m \:  = n  \:  \:  \:  \:  \:  \:  \\:  \\  >  {x}^{0}  = 1 \:  \:  \:  \:  \{ \: x \neq0 \:  \}

Similar questions