Math, asked by nischal347, 2 months ago

If 2^{x} = 3^{y} = 6^{ - z} then x^{-1}+y^{-1}+z^{-1} is equal to​

Answers

Answered by mathdude500
3

Answer:

\boxed{\bf \:  {x}^{ - 1}  +  {y}^{ - 1}   + {z}^{ - 1}  = 0 \: } \\

Step-by-step explanation:

Given that,

\sf \:  {2}^{x} =  {3}^{y} =  {6}^{- z}  \\

Let assume that

\sf \:  {2}^{x} =  {3}^{y} =  {6}^{- z} = k  \\

Now,

\sf \:  {2}^{x}  = k \:  \: \sf \:  \implies \: 2 =  {\bigg(k\bigg) }^{\dfrac{1}{x} } \\

Also,

\sf \:  {3}^{y}  = k \:  \: \sf \:  \implies \: 3 =  {\bigg(k\bigg) }^{\dfrac{1}{y} }  \\

Also,

\sf \:  {6}^{- z} = k\\

\sf \: 6 = {\bigg(k\bigg) }^{- \dfrac{1}{z} } \\

\sf \: 2 \times 3 = {\bigg(k\bigg) }^{- \dfrac{1}{z} }\\

\sf \: {\bigg(k\bigg) }^{\dfrac{1}{x} } \times {\bigg(k\bigg) }^{\dfrac{1}{y} } = {\bigg(k\bigg) }^{- \dfrac{1}{z} } \\

\sf \: {\bigg(k\bigg) }^{\dfrac{1}{x} + \dfrac{1}{y} }  = {\bigg(k\bigg) }^{- \dfrac{1}{z} } \\

\sf \: \dfrac{1}{x} + \dfrac{1}{y}  = - \dfrac{1}{z}  \\

\sf \: \dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z}  = 0 \\

\implies\sf \:  {x}^{ - 1}  +  {y}^{ - 1}   + {z}^{ - 1}  = 0 \\

Hence,

\implies\sf \: \boxed{\bf \:  {x}^{ - 1}  +  {y}^{ - 1}   + {z}^{ - 1}  = 0 \: } \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions