Math, asked by nyaypriy39, 5 hours ago

If 2^x=3^y=6^z ,then z is equal to​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {2}^{x}  =  {3}^{y}  =  {6}^{z}

Let assume that

\rm :\longmapsto\: {2}^{x}  =  {3}^{y}  =  {6}^{z}  = k

So,

\rm :\longmapsto\: {2}^{x} = k\rm\implies \:2 =  {\bigg(k\bigg) }^{\dfrac{1}{x} }

\rm :\longmapsto\: {3}^{y} = k\rm\implies \:3 =  {\bigg(k\bigg) }^{\dfrac{1}{y} }

and

\rm :\longmapsto\: {6}^{z} = k\rm\implies \:6 =  {\bigg(k\bigg) }^{\dfrac{1}{z} }

Now, we have

\rm :\longmapsto\:6 = {\bigg(k\bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\:2 \times 3 = {\bigg(k\bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{1}{x} }  \times {\bigg(k\bigg) }^{\dfrac{1}{y} }  = {\bigg(k\bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{1}{x}  + \dfrac{1}{y} } = {\bigg(k\bigg) }^{\dfrac{1}{z} }

 \red{ \bigg\{  \sf \: \because \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}    \bigg\}}

\rm\implies \:\dfrac{1}{x}  + \dfrac{1}{y}  = \dfrac{1}{z}

\rm\implies \:\dfrac{y + x}{xy}  = \dfrac{1}{z}

\bf\implies \:z = \dfrac{xy}{x + y}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\boxed{\tt{  {a}^{m} \div  {a}^{n}  =  {a}^{m - n}  \: }}

\boxed{\tt{  {( {x}^{m} )}^{n} =  {x}^{mn} \: }}

\boxed{\tt{ \: {x}^{0} = 1 \: }}

\boxed{\tt{ \: {x}^{ - y} =  \frac{1}{ {x}^{y} }  \: }}

Answered by Missincridedible
3

\color{purple}{ \colorbox{orange}{\colorbox{white} {hope \: it \: helps \: you}}}

Attachments:
Similar questions