Math, asked by bhoomikabhaskar26, 1 year ago

If (2+x) and (3+x) are the factors of x³+ax+b,, find the value of a and b

Answers

Answered by ShuchiRecites
18
\textbf{ Hello Mate! }

Since, ( x + 2 ) and ( x + 3 ) are factors then final value of p(x) = 0 where x = - 2 and - 3

p(x) =  {x}^{3}  + ax + b \\ p( - 2) =  { - 2}^{3}  + a( - 2) + b \\0  =  - 8 - 2a + b \\ 8 =  - 2a + b .....(1)\\   \\   p( - 3) =  { - 3}^{3}  + a( - 3) + b \\ 0 =  - 27 - 3a + b \\ 27 =  - 3a + b \\  - 27 =  - ( - 3a + b) \\  - 27 = 3a - b........(2)

On adding (1) and (2) we get,

- 19 = a

Substituting values we get,

8 = - 2a + b

8 = - 2( - 19 ) + b

8 = 38 + b

- 30 = b

\textsf{ \red{ a = - 19 and b = - 30 }}

Have great future ahead!
Answered by SunitaWilliams
7
Let p(x) be given Equation :-

 {x}^{3} + ax + b

→ Given (2+X) and (3+X) are the factors of given Equation

(1) → 2+ x = 0 ( since it's a factor )

→ X = -2

(2) → 3+ x = 0

→ X = -3

let's substitute X = -2 in given Equation

 { - 2}^{3} + a( - 2) + b \\ \\ - 8 - 2a + b \\ \\ - 2a + b = 8.............(1)
let's substitute X= -3 in given Equation

 { - 3}^{3} + a( - 3) + b \\ \\ - 27 - 3a + b \\ \\ - 3a + b = 27..................(2)

By Elimination Method

-3(-2a+b =8)

-2(-3a+b=27)

6a-3b = -24
6a-2b = -54
(-). (+). (+)
__________
-b = 30
__________

*************

b = -30

***************

substitute 'b' value in equation (1)

-2a + b = 8

-2a -30 = 8

-2a = 8+30

-2a = 38

a = 38/-2

*************

a = -19

**************

=============

VERIFICATION

 {x}^{3} + ax + b \\ \\ { - 2}^{3} - 19( - 2) - 30 \\ \\ - 8 + 38 - 30 = 0

hence [ a = -19 , b = -30 ]

=====================

Thnq
Similar questions