Math, asked by sabarishan7777iiii, 10 months ago

if 2 x square equal to 2 + root 3 write X in terms of a + b root 3​

Answers

Answered by harendrachoubay
0

This is form of x in terms of 2 + \sqrt{3} is "1 + \dfrac{1}{2}·\sqrt{3}".

Step-by-step explanation:

Given,

2x^{2} = 2 + \sqrt{3}

x^{2}  = \dfrac{2}{2} + \dfrac{[tex]\sqrt{3} }{2}[/tex]

x^{2} = 1 + \dfrac{1}{2}·\sqrt{3}

This is form of x in terms of 2 + \sqrt{3} is 1 + \dfrac{1}{2}·\sqrt{3} .

Answered by isyllus
0

x=\dfrac{1}{2}+\dfrac{1}{2}\sqrt{3}

or

x=-\dfrac{1}{2}-\dfrac{1}{2}\sqrt{3}

Step-by-step explanation:

Given that, 2x^2=2+\sqrt{3}

x^2=1+\dfrac{1}{2}\sqrt{3}

x=\sqrt{1+\dfrac{1}{2}\sqrt{3}}

Let \sqrt{1+\dfrac{1}{2}\sqrt{3}}=a+b\sqrt{3}

where, a and b are real number.

Taking square both sides

1+\dfrac{1}{2}\sqrt{3}=(a+b\sqrt{3})^2

1+\dfrac{1}{2}\sqrt{3}=a^2+3b^2+2ab\sqrt{3}

Comparing the coefficients

a^2+3b^2=1 ------- (1)

2ab=\dfrac{1}{2}

b=\dfrac{1}{4a}

Substitute b into eq(1)

a^2+\dfrac{3}{16a^2}=1

16a^4-16a^2+3=0

using quadratic formula, ax^2+bx+c=0 then x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Therefore,

a^2=\dfrac{16\pm\sqrt{16^2-4\cdot 16\cdot 3}}{2\cdot 16}

a^2=\dfrac{3}{4},\dfrac{1}{4}

a=\pm\dfrac{\sqrt{3}}{2},\pm\dfrac{1}{2}

a is real. So, possible value of, a=\pm\dfrac{1}{2}

Put a into b=\dfrac{1}{4a}

b=\pm\dfrac{1}{2}

So, x=\dfrac{1}{2}+\dfrac{1}{2}\sqrt{3}

or x=-\dfrac{1}{2}-\dfrac{1}{2}\sqrt{3}

#Learn more:

https://brainly.in/question/12420286

Similar questions