Math, asked by StrongGirl, 9 months ago

If 2¹⁰ + 2⁹ . 3 + 2⁸. 3² + 2⁷ .... 3¹⁰ =S.2¹¹ then S = ?

Attachments:

Answers

Answered by pulakmath007
21

\displaystyle\huge\red{\underline{\underline{Solution}}}

 {2}^{10}  +  {2}^{9} . \: 3 +  {2}^{8} . {3}^{2}  + ........ +  {3}^{10}

 = \displaystyle \sum\limits_{r=0}^{10}  {2}^{10 - r}  \times  {3}^{r}

 =  {2}^{10} \times  \displaystyle \sum\limits_{r=0}^{10}  {2}^{ - r}  \times  {3}^{r}

 =  {2}^{10} \times  \displaystyle \sum\limits_{r=0}^{10}    { \bigg( \frac{3}{2} \bigg) }^{r}

It is a Geometric Progression with first term = 1

Common Difference

 =  \frac{3}{2}

Number of terms = 11

So

 {2}^{10}  +  {2}^{9} . \: 3 +  {2}^{8} . {3}^{2}  + ........ +  {3}^{10}

 =  {2}^{10} \times  \displaystyle \sum\limits_{r=0}^{10}    { \bigg( \frac{3}{2} \bigg) }^{r}

 =    {2}^{10} \times  \displaystyle 1 \times   \frac{{ \bigg( \frac{3}{2} \bigg) }^{11} - 1}{ \frac{3}{2} - 1 }

 =    {2}^{10} \times  \displaystyle 1 \times   \frac{{ \bigg( \frac{3}{2} \bigg) }^{11} - 1}{ \frac{1}{2}  }

 =    {2}^{11} \times  \displaystyle     \{ {\bigg(  \frac{3}{2} \:\bigg)}^{11}  - 1  \}

Hence S =

 \displaystyle \: {\bigg(  \frac{3}{2} \:\bigg)}^{11}  - 1

 \displaystyle \:  =  \frac{ {3}^{11} }{ {2}^{11} }  - 1

Answered by Anonymous
1

Answer:

B is the correct answer

Step-by-step explanation:

please mark as brainliest answer

Similar questions