if 270°<A<360°,90°<B<180°,cos A=5/13,tan B=-15/8,then sin(A+B)
if any one answer this question properly I Will MARK AS BRAINLIEST ANSWER
Answers
Answer:
cosA=base/hypotuse=5/13
perpendicular=169-25=144
perpendicular is 12
tanB=15/8 =perpendicular/base
so hypotuse for B is 17
So sin ( A+B)=sinAcosB+ cosAsinB
sinA= 12/13
sinB=15/17
cosA=5/13
cosB=8/17
=12/13*8/17+5/13*15/17
=96/221+75/221
=171/221
Hi there
Here is your answer
___________________________________________________________
270°<A<360 = 4 quadrant
90°<B<180° = 2 quadrant
Given, cos A=5/13 tan B=-15/8
In 4 quadrant sin is negative
cos A=base/hypotenuse = 5/13
sin A= perpendicular/hypotenuse =12/13 {By using Pythagoras theoram}
but in 4 quadrant sin is negative= -12/13
Similarly,
tan B=perpendicular/base=-15/8
sin B= perpendicular/hypotenuse =-15/17
but in 2 quadrant sin is positive= 15/17
similarly cos B=-8/17 {cos is negative in 2 quadrant}
We know that sin(A+B)=sinAcosB +cosAsinB
By putting values we get,
sin(A+B)= -12/13 × -8/17 + 5/13 × 15/17
= 96/221 + 75/221
Ans =171/221
____________________________________________
Hope It Helps
Best of Luck
Please Mark My Answer as Brainliest Answer