If 2a+3b=15 and ab=10,then find out the value of 8a3+27b3
Answers
Answered by
34
Hi,
Here is your answer !
_________________________
Given :
2a + 3b= 15 ----------(1)
ab = 10 -----------(2)
Cubing both sides in eq (1) , We get
(2a + 3b)³ = 15³
Using Identity,
(x + y)³ = x³ + y³ + 3xy(x + y)
We have
(2a)³ + (3b)³ + 3(2a)(3b) (2a + 3b) = 15³
8a³ + 27b³ + 18ab×(15) = 3375 [ from (1) ]
8a³ + 27b³ + 18×10×15 = 3375 [ from (2) ]
8a³ +27b³ + 2700 =3375
8a³ + 27b³ = 3375 - 2700
8a³ + 27b³ = 675
Here is your answer !
_________________________
Given :
2a + 3b= 15 ----------(1)
ab = 10 -----------(2)
Cubing both sides in eq (1) , We get
(2a + 3b)³ = 15³
Using Identity,
(x + y)³ = x³ + y³ + 3xy(x + y)
We have
(2a)³ + (3b)³ + 3(2a)(3b) (2a + 3b) = 15³
8a³ + 27b³ + 18ab×(15) = 3375 [ from (1) ]
8a³ + 27b³ + 18×10×15 = 3375 [ from (2) ]
8a³ +27b³ + 2700 =3375
8a³ + 27b³ = 3375 - 2700
8a³ + 27b³ = 675
Answered by
5
Answer:
Answer=675
Step-by-step explanation:
Hope this answer will help u
Attachments:
![](https://hi-static.z-dn.net/files/d4e/ff647ce6624b1eddf5906067f1f57f27.jpg)
Similar questions