If 2a+3b+4c=10 and 6ab+12bc+8ac=32, then what is the value of 4a2+9b2+16c2?
Answers
Answered by
12
Answer:
We know
(x+y+z)(x2+y2+z2−xy−yz−zx)=x3+y3+z3−3xyz
∴(2a+3b−4c)(4a2+9b2+16c2+12bc+8ca)
=(2a)3+(3b)3+(−4c)3−3×(2a)×(3b)×(−4c)
=8a3+27b3−64c3+72abc
Hope u like it
have a good day army ♡
please drop some thanks
Answered by
0
Answer:
the value of 4a2+9b2+16c2=36
Step-by-step explanation:
( 2a+3b+4c)^2=(10 )^2
4a2+9b2+16c2+12ab+24bc+16ac=100
4a2+9b2+16c3+2(6ab+12bc+8ac)=100
4a2+9b2+16c3+2(32)=100
4a2+9b2+16c3=100-64
4a2+9b2+16c3=36
Similar questions