If 2cos^2Φ-11cosΦ+5=0, then find possible values of cosΦ.
Answers
Answered by
24
Answer:
Use Mid term splitting method:
2 cos^2 Φ - 11 cos Φ + 5 = 0
2 cos^2 Φ - 10 cosΦ - cosΦ + 5 = 0
2 cos Φ( cosΦ - 5) - 1 ( cos Φ - 5) = 0
( cosΦ - 5) ( 2cos Φ - 1 ) = 0
Cos = 5, 1/2
Answered by
8
2cos²(phi) - 11cos(phi) + 5 =0
let x = cos (phi)
then,
2x² - 11x +5=0
2x² - (10+1)x +5=0
2x² - 10x - x + 5= 0
2x(x-5)-1(x-5) =0
(2x-1)(x-5) = 0
Either 2x -1=0
hence, x = 1/2
or, x-5=0
hence, x=5
Thus, cos (phi) = 1/2, 5
but maximum value of cos (phi) is +1, hence we take cos(phi)=1/2..
Similar questions
Computer Science,
6 months ago
India Languages,
6 months ago
English,
1 year ago
Math,
1 year ago
Science,
1 year ago