If 2cos theta - sin theta = x and cos theta - 3sin theta = y .
( Prove that 2 x sq + y sq. - 2xy = 5 )
Plz answer it !!!!
urgent !!!!
☺️☺️☺️☺️☺️
Answers
Answered by
67
Hey friend, Harish here.
Here is your answer:
Given that :
1) 2 cos θ - sin θ = x
2) cos θ - 3 sin θ = y
To Prove :
2x² + y² - 2xy = 5
Proof :
2 x² = 2 ( 2cos θ - sin θ )² = 2 + 6 cos² θ - 8 sin θ. cos θ - (i)
y² = ( cos θ - 3 sin θ )² = 1 + sin² θ - 6 sin θ cos θ - (ii)
2 xy = 2 × (2cos θ - sin θ) (cos θ - 3 sin θ) = 4 + 2 sin² θ - 14 sin θ . cos θ - (iii)
Now adding (i) , (ii) and (iii) we get :
2x² + y² - 2xy = [2 + 6 cos² θ - 8 sin θ. cos θ] + [1 + sin² θ - 6 sin θ cos θ] - [4 + 2 sin² θ - 14 sin θ . cos θ]
⇒ 2x² + y² - 2xy = 6 cos² θ + 6 sin² θ - 1 = 6 (cos² θ + sin² θ) - 1 = 6 (1) - 1 = 5
IDENTITY USED :
HENCE PROVED : )
___________________________________________________
Hope my answer is helpful to you. All the best.
dhwanil52:
Xxx
Answered by
31
According to the Question
(2 cosθ - sinθ) = x (cosθ - 3 sinθ) = y
Substitute the values of x and y
2x^2 + y^2 − 2xy (Left Hand Side)
= 2(2 cosθ − sinθ)2 + (cosθ − 3 sinθ)2 − 2(2 cosθ − sinθ)(cosθ − 3 sinθ)
= 2(4cos^2θ − 4cosθ sinθ + sin^2θ) + (cos^2θ − 6cosθ sinθ + 9sin^2θ) - 2(2cos^2θ − 7cosθ sinθ + 3sin^2θ)
= 8cos^2θ − 8cosθ sinθ + 2sin^2θ + cos^2θ − 6cosθ sinθ + 9sin^2θ − 4cos^2θ + 14cosθ sinθ − 6sin^2θ
= 5cos^2θ + 5sin^2θ
= 5(cos^2θ + sin^2θ)
= 5(1) = 5 ⇒ ( cos^2θ + sin^2θ = 1)
LHS = RHS
Similar questions