Math, asked by sdsk11972, 5 months ago

If 2log (base 8) N=P, log (base 2) 2N=Q and Q-P=4, find N

Answers

Answered by bson
2

Step-by-step explanation:

P = 2 log N base 8

= 2× log N/ log 8

= 2× log N/ log 2³ = 2× log N / 3 log 2

= 2/3 * log N base 2

log 2N base 2 = Q

let log x base 2 be represented as log x, where x is any no. or variable

Q - P = 4

log 2N - 2/3* log N = 4

log 2N - log N ^⅔ = 4

log 2N/N^⅔ =4

log 2× N ^(1-⅔) = 4

log 2× N^⅓ =4

2×N ^⅓ = 2⁴ as log base = 2

N^⅓ = 2⁴/2

N ^ ⅓ = 2³

N = 2^(3×3) = 2⁹

Answered by MagicalBeast
6

Given :

\sf \bullet \:  \: 2 log_{8}(N) =  \:   P \\  \\  \sf \bullet \:   log_{2}(2 N ) \:   =   Q \\  \\ \sf \bullet \: Q \:  - \:  P = 4

To find : N

Identity used :

\sf \bullet  \:  log_{a}(b)  =   \dfrac{ log_{x}(a) }{ log_{x}(b) }   \\  \\  \sf \bullet \:  log(ab)  =  log(a)   \:  +  \: log(b)  \\ \\  \sf \bullet  \:  log( {a}^{m} ) \:  =  \: m \:  \times  log(a)   \\  \\  \:\sf \bullet  log_{a}(a)  = 1 \\  \\  \sf \:  \bullet \: if \:   log_{x}(a)   =  log_{x}(b) \\ \sf \: then \:  \:  \: a = b

Solution :

 \sf \: Q - P = 4 \\  \\ \sf \implies  \:  log_{2}(2 N)  \:  -  \: 2 \{ \:  log_{8}(N) \} \:  = 4 \\  \\  \:   \sf \implies  \:   log_{2}(2N) \:   -  \: 2 \bigg \{ \:  \dfrac{  log_{2}(N) }{ log_{2}(8)} \bigg \} \:  = 4 \\  \\ \sf \implies  \:   log_{2}(2N) \:   -  \: 2 \bigg \{ \:  \dfrac{  log_{2}(N) }{ log_{2}( {2}^{3} )} \bigg \} \:  = 4 \\  \\ \sf \implies  \:   \bigg \{ log_{2}(2) +  log_{2}( N ) \bigg \} \:   -  \: 2 \bigg \{ \:  \dfrac{  log_{2}(N) }{3 \times  log_{2}(2)} \bigg \} \:  = 4 \\  \\ \sf \implies  \:   \bigg \{ 1 \: +  log_{2}( N ) \bigg \} \:   -  \: 2 \bigg \{ \:  \dfrac{  log_{2}(N) }{3 \times 1} \bigg \} \:  = 4  \\  \\ \sf \implies  \:  1 \: +  log_{2}( N )    -  \:  \:  \dfrac{  2 }{3 }log_{2}(N) \:  = 4 \\  \\  \sf \implies  \:    log_{2}( N )  \bigg \{ \: 1 -  \dfrac{2}{3} \bigg \}   \:  = 4 - 1 \\  \\ \sf \implies  \:    log_{2}( N )  \bigg \{   \dfrac{1}{3} \bigg \}   \:  = 3 \\  \\\sf \implies  \:    log_{2}( N ) = 3 \times 3 \\  \\ \sf \implies  \:    log_{2}( N ) =9 \times  log_{2}(2)  \\  \\ \sf \implies  \:    log_{2}( N ) = log_{2}( {2}^{9} )  \\  \\ \sf \implies  \:  N   \: = \:  {2}^{9}  = 512

ANSWER :

N = 2 = 512

Similar questions