Math, asked by rameshsamudrala150, 11 months ago

Find the answer of the question​

Attachments:

Answers

Answered by Rohit18Bhadauria
0

Answer:

20 is the correct answer

To Find:

  • Value of 2^{2+\log_{2}{5} }

Solution

We know that(Logarithmic properties),

  • \bf{a^{\log_{a}{n} }=n{,where\:a>0,a\neq {1}}}
  • \bf{\log_{a}{m^{n} }=n\log_{a}{m}{,where\:a>0,a\neq {1}}}
  • \bf{{\log_{a}{a}=1}{,where\:a>0,a\neq {1}}}
  • \bf{\log_{2}{4}=\log_{2}{2^{2} }=2\log_{2}{2}=2}
  • \bf{{\log_{a}{m}+\log_{a}{n}=\log_{a}{(m\times n)}}{,where\:a>0,a\neq {1}}}

Now,

\longrightarrow\sf{2^{2+\log_{2}{5} }}

After changing 2 into \bf{\log_{2}{4}}, we get

\longrightarrow\sf{2^{\log_{2}{4}+\log_{2}{5} }}

\longrightarrow\sf{2^{\log_{2}{\red{(4\times5)}} }}

\longrightarrow\sf{2^{\log_{2}{\red{(20)}} }}

\longrightarrow\sf{\purple{20}}

☛Hence, the value of 2^{2+\log_{2}{5} } is \bf{\green{20}}.

Similar questions