Math, asked by daisy4494, 9 months ago

if (2n+1)+(2n+3)+(2n+5)+....+(2n+47)=5280. find the value of 1+2+3+....+n

Answers

Answered by BrainlyTornado
2

ANSWER:

  • The value of 1 + 2 + 3 +....+ n = 4851

GIVEN:

  • (2n + 1 ) + (2n + 3) + (2n + 5) +....+ (2n + 47) = 5280.

TO FIND:

  • The value of 1 + 2 + 3 +....+ n.

EXPLANATION:

(2n + 1 ) + (2n + 3) + (2n + 5) +....+ (2n + 47) = 5280.

 \boxed { \bold{ \large{S_m= \dfrac{m}{2}(a + l)}}}

Here m is the number of terms.

a = (2n + 1 )

l = (2n + 47)

\sf S_m = 5280

 \boxed {\large{ \bold{ m= \dfrac{l-a}{d} + 1}}}

d = t₂ - t₁ = (2n + 3) - (2n + 1 )

d = 3 - 1 = 2

 \sf{m= \dfrac{2n + 47 -(2n + 1 )}{2} + 1}

\sf{m= \dfrac{2n + 47 -2n  -  1 }{2} + 1}

\sf{m= \dfrac{46}{2} + 1}

 \sf{m = 23 + 1}

  \sf m = 24

 \sf{5280= \dfrac{24}{2}(2n +1 + 2n + 47)}

 \sf{5280= 12(4n + 48)}

\sf{440= 4n + 48}

\sf{110= n + 12}

 \sf{n = 98}

Substitute n = 98 in 1 + 2 + 3 +....+ n.

1 + 2 + 3 +....+ 98

 \boxed { \bold{ \large{Sum= \dfrac{m(m + 1)}{2}}}}

Here m is the number of terms.

m = 98

 \sf{Sum= \dfrac{98(98 + 1)}{2}}

 \sf{Sum= 49(99)}

 \sf{Sum= 4851}

Hence the value of 1 + 2 + 3 +.... + n = 4851

Similar questions