if 2s=a+b+c find (s+a) 3-(s-b)3-3(s+a)(s-b)(a+b)
Answers
Answered by
37
i) (s - a)³ + (s - b)³ + 3c(s - a)(s - b) = (s - a)³ + (s - b)³ + 3(s - a)(s - b)(2s - a - b)
{Since a + b + c = 2s, c = 2s - a - b}
= (s - a)³ + (s - b)³ + 3(s - a)(s - b){(s - a) + (s - b)}
ii) Right side of the above is of the form: x³ + y³ + 3xy(x + y) = (x + y)³;
Here x = s - a and y = s - b
iii) Hence, right side = (s - a + s - b)³ = (2s - a - b)³ = c³
Hence it is proved that:
(s - a)³ + (s - b)³ + 3c(s - a)(s - b) = c³
{Since a + b + c = 2s, c = 2s - a - b}
= (s - a)³ + (s - b)³ + 3(s - a)(s - b){(s - a) + (s - b)}
ii) Right side of the above is of the form: x³ + y³ + 3xy(x + y) = (x + y)³;
Here x = s - a and y = s - b
iii) Hence, right side = (s - a + s - b)³ = (2s - a - b)³ = c³
Hence it is proved that:
(s - a)³ + (s - b)³ + 3c(s - a)(s - b) = c³
Answered by
0
Answer:
may or may not be correct because here I haven't use 2s=a+b+c
Attachments:
Similar questions