If 2sin^2A-cos^2A=2 THEN FIND THE VALUE OF A
Answers
Answered by
38
If 2 sin^2 A - cos^2 A = 2, what is the value of A?
2 sin^2 A - cos^2 A = 2
2 sin^2 A - cos^2 A = 2(sin^2 A + cos^2 A)
2 sin^2 A - cos^2 A = 2sin^2 A + 2cos^2 A
3cos^2 A = 0
cos A = 0, or A = 90 deg or 180 deg.
Check: 2 sin^2 A - cos^2 A
= 2*sin^2 90 - cos^2 90
= 2*1–0= 2. Correct.
Hence A = 90 deg or 180 deg.
2 sin^2 A - cos^2 A = 2
2 sin^2 A - cos^2 A = 2(sin^2 A + cos^2 A)
2 sin^2 A - cos^2 A = 2sin^2 A + 2cos^2 A
3cos^2 A = 0
cos A = 0, or A = 90 deg or 180 deg.
Check: 2 sin^2 A - cos^2 A
= 2*sin^2 90 - cos^2 90
= 2*1–0= 2. Correct.
Hence A = 90 deg or 180 deg.
Answered by
2
Answer:
Ans) 90
Step-by-step explanation:
We have
2 sin2 A - cos2 A = 2
2 sin2 A - cos2 A = 2(sin2 A + cos2 A)
2 sin2 A - cos2 A = 2sin2 A + 2cos2 A
3cos2 A = 0
cos A = 0
A = 90
Similar questions