If 2sinβ + 3 cos β =2 , prove that ( 3 sin β – 2cos β) = ± 3
Answers
Answered by
0
Answer:
Let z1=cosα+isinα=eiα, z2=cosβ+isinβ=eiβ and z3=cosγ+isinγ=eiγ
Now z1+2z2+3z2=(cosα+2cosβ+3cosγ)+i(sinα+2sinβ+3sinγ)=0
Now using the fact: If a+b+c=0, then a3+b3+c3=3abc
(z1)3+(2z2)3+(3z3)3=3(z1)(2z2)(3z3)
⇒e3iα+8e3iβ+27e3iγ=18ei(α+β+γ)=18
Answered by
0
Correct option is
B
0
Let z1=cosα+isinα=eiα, z2=cosβ+isinβ=eiβ and z3=cosγ+isinγ=eiγ
Now z1+2z2+3z2=(cosα+2cosβ+3cosγ)+i(sinα+2sinβ+3sinγ)=0
Now using the fact: If a+b+c=0, then a3+b3+c3=3abc
(z1)3+(2z2)3+(3z3)3=3(z1)(2z2)(3z3)
⇒e3iα+8e3iβ+27e3iγ=18e
Similar questions