If 2sin²Φ+ 2cosΦ+ 1/4=0 then the general equation is?
Answers
Answered by
1
2( 1- cos²∅) + 2cos∅ + 1/4 = 0
2 - 2cos²∅ +2cos∅ + 1/4 = 0
-2cos²∅ +2cos∅ + 9/4 = 0
-8cos²∅ + 8cos∅ + 9 = 0
8cos²∅ - 8cos∅ - 9 = 0
cos∅ = { 8 ± √352}/16
18 < √352 < 19
let √352 ≈ 18.7 ( approx )
then,
cos∅ = ( 8 -18.7)/16 , (8+18.7)/16
cos∅ ≠ ( 8 + 18.7)/16 becoz max value of cos = 1
so,
cos ∅ = ( -10.7)/16
∅ = 2nπ ± cos^-1( -10.7)/16
2 - 2cos²∅ +2cos∅ + 1/4 = 0
-2cos²∅ +2cos∅ + 9/4 = 0
-8cos²∅ + 8cos∅ + 9 = 0
8cos²∅ - 8cos∅ - 9 = 0
cos∅ = { 8 ± √352}/16
18 < √352 < 19
let √352 ≈ 18.7 ( approx )
then,
cos∅ = ( 8 -18.7)/16 , (8+18.7)/16
cos∅ ≠ ( 8 + 18.7)/16 becoz max value of cos = 1
so,
cos ∅ = ( -10.7)/16
∅ = 2nπ ± cos^-1( -10.7)/16
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
Math,
1 year ago
Math,
1 year ago
Science,
1 year ago