if 2sinA + 3cosA=2, then find 3sinA - 2cosA ?
Answers
Answer:
3sinA - 2cosA = ±3.
Step-by-step explanation:
Hi,
Let 3sinA - 2cosA = x,
Given that 2sinA + 3cosA = 2,
Now, Consider
(3sinA - 2cosA)² + (2sinA + 3cosA)²
= x² + 2²
= x² + 4
= 9sin²A - 12sinAcosA + 4cos²A
+ 4sin²A + 9cos²A + 12sinAcosA
which can be simplified as
= 13sin²A + 13cos²A
= 13(sin²A + cos²A),
But we know that from trigonometric identities
sin²A + cos²A = 1,
Hence,
x² + 4 = 13
x² = 9
x = ±3
Hence, 3sinA - 2cosA = ±3.
Hope, it helps !
Answer:
3sinA - 2cosA = ±3
Step-by-step explanation:
if 2sinA + 3cosA=2, then find 3sinA - 2cosA ?
2sinA + 3cosA=2
squaring both side
(2sinA + 3cosA)² = 2²
=> 4Sin²A + 9Cos²A + 12SinACosA = 4
=> 12SinACosA = 4 - 4 Sin²A - 9Cos²A
=> 12SinACosA = 4(1 - Sin²A) - 9Cos²A
as Cos²A + Sin²A = 1
=> 12SinAcosA = 4Cos²A - 9Cos²A
=> 12SinACosA = -5Cos²A - eq 1
=> 5Cos²A + 12SinACosA = 0
=> CosA(5CosA + 12SinA) = 0
CosA = 0 or CosA = -12SinA/5
when CosA = 0
2sinA + 0 = 2 => SinA = 1
so 3sinA - 2cosA = 3 - 0 = 3
3sinA - 2cosA = 3
when
CosA = -12SinA/5
2SinA + 3(-12SinA/5) = 2
=> 10SinA - 36SinA = 10
=> -26SinA = 10
=> -13SinA = 5
=> SinA = -5/13
CosA = -12SinA/5
=> CosA = -12 * (-5/13) /5 = 12/13
=> CosA = 12/13
3sinA - 2cosA
= 3(-5/13) -2(12/13)
= -15/13 -24/13
= -39/13
= -3
3sinA - 2cosA = -3
3sinA - 2cosA = ±3
Another way to solve without finding value of SinA & CosA
let say
3sinA - 2cosA = x
Squaring both sides
(3sinA - 2cosA)² = x²
=> x² = 9Sin²A + 4Cos²A - 12SinACosA
putting value of 12SinACosA from Eq 1
=> x² = 9Sin²A + 4Cos²A - (-5Cos²A)
=> x² = 9Sin²A + 4Cos²A + 5Cos²A
=> x² = 9 (Sin²A + Cos²A)
=> x² = 94
=> x = ±3
=> 3sinA - 2cosA = ±3