Math, asked by satinder21kumar, 11 months ago

if 2tanβ+cotβ=tanα prove that cotβ=2tan(α-β)​

Answers

Answered by Anonymous
2

\huge\mathtt\pink{Given}

2 tan beta+ cot beta = tan alpha

\huge\mathtt\pink{To\:Prove}

cot\beta = 2 tan ( alpha- beta)

\huge\mathtt\pink{Solution}

2 \:  \tan( \alpha  -  \beta )  = 2 \frac{ \tan( \alpha ) -  \tan( \beta )  }{1 +  \tan( \alpha ) . \tan( \beta ) }  \\

✧Using the formula of tan ( a - b )

2( \frac{2 \tan( \beta )  +  \cot( \beta ) -  \tan( \beta )  }{1 + (2 \tan( \beta ) +  \cot( \beta ) ) \tan( \beta )  })  \\

✧ Using tan alpha = 2 tan beta + cot beta

2( \frac{ \tan( \beta )  +  \cot( \beta ) }{1 + 2  { \tan( \beta ) }^{2} + 1  } ) \\

 \frac{2( \tan( \beta ) +  \cot( \beta ))  }{2 +  { \tan( \beta ) }^{2} }  \\

 \frac{2( \tan( \beta )  +  \frac{1}{ \tan( \beta ) } )}{2(1 +  { \tan( \beta ) }^{2}) }  \\

 \frac{1}{ \tan( \beta ) }  \\

→ cot beta

LHS = RHS

Similar questions