Math, asked by rishi86871, 4 months ago

if 2tan theta = 3, then sin^2theta + cos^2theta =?

Answers

Answered by chMalleshwari1111
22

Answer:

answer = 1 hope u got your answer

Attachments:
Answered by Ataraxia
55

Given :-

\sf\bullet \ 2 \  tan \theta = 3

\sf\therefore tan \theta = \dfrac{3}{2}

To Find :-

\sf sin^2 \theta+cos^2 \theta

Solution :-

We know :-

\bf\dag \ sec^2 \theta = 1+ tan^2 \theta

\sf : \implies sec^2 \theta = 1 +  \left( \dfrac{3}{2}^2 \right)

\sf : \implies sec^2 \theta = 1+ \dfrac{9}{4}

\sf : \implies sec^2 \theta = \dfrac{4+9}{4}

\sf : \implies sec^2 \theta = \dfrac{13}{4}

We know :-

\bf\dag \ cos \theta = \dfrac{1}{sec \theta }

\sf : \implies cos^2 \theta = \dfrac{1}{sec^2 \theta }

\sf : \implies cos^2 \theta = \dfrac{4}{13}

We know :-

\bf\dag \ sin \theta = cos \theta tan \theta

\sf : \implies sin^2 \theta = cos^2 \theta tan^2 \theta

\sf : \implies sin^2 \theta = \dfrac{4}{13} \times \dfrac{9}{4}

\sf : \implies sin^2 \theta = \dfrac{9}{13}

\sf : \implies sin^2 \theta + cos^2 \theta = \dfrac{9}{13}+\dfrac{4}{13}

\sf : \implies sin^2 \theta+cos^2 \theta = \dfrac{9+4}{13}

\sf : \implies sin^2 \theta + cos^2 \theta = \dfrac{13}{13}

\bf : \implies sin^2 \theta +cos^2 \theta = 1

Similar questions