If
2x + 3y = 12
12 and
xy = 6 , find the value of 8x cube+27y cube
Answers
Given :-
2x+3y = 12 》equation.1
xy = 6 》equation.2
To Find :-
Solution :-
From the equation.2 》
xy = 6
y = 6/x
"y" value substitute in equation.1》
2x+3(6/x) = 12
2x+(18/x) = 12
(2x × x + 18)/x = 12
2x^2 +18 = 12x
2x^2-12x+18 = 0 》equation.3
》We have to find the "x" value by using finding roots method.
2x^2-6x-6x+18 = 0
2x(x-3)-6(x-3) = 0
(2x-6)(x-3) = 0
2x-6 = 0 or x-3 = 0
2x = 6 or x = 3
x = 3 or x = 3
soo we got 》 x = 3
》"x" value substite in equation.2 then we get "y" value.
xy = 6
3y = 6
y = 6/3
y = 2
》 Finally we have to find the value of
"8x^3+27y^3 " by using "x & y" values.
=> 8(3)^3 + 27(2)^3
=> 8(27) + 27(8)
=> 216 + 216
=> 432
Checking the "x & y" values :-
》 take the equation.1 and substitute the values of "x & y".
2x + 3y = 12
2(3) + 3(2) = 12
6 + 6 = 12
12 = 12
LHS = RHS
2x+3y=12
Xy =6
Find 8x^3+27y^3
2x+3y=12
Cubing both sides
(2x+3y)^3=12^3
(a+b)^3=a^3+b^3+3ab(a+b)=1728
8x^3+27y^3+3×2x×3y(2x+3y)=1728
8x^3+27y^3+18×6×12=1728
8x^3+27y^3+1296=1728
8x^3+27y^3= 432