if 2x+3y= 12 and xy= 6 , find the value of 8x³+27y³
Answers
Answered by
6
Step-by-step explanation:
Given:-
2x+3y= 12 and xy= 6
To find:-
if 2x+3y= 12 and xy= 6 , find the value of 8x³+27y³
Solution:-
Given that:
2x+3y= 12--------(1)
and xy= 6 -------(2)
On Cubing equation (1) : 2x+3y = 12 both sides
=>(2x+3y)^3 = 12^3
It is in the form of (a+b)^3
Where ,a = 2x
b=3y
we know that
(a+b)^3 = a^3 +3ab (a+b)+b^3
=>(2x)^3 + 3(2x)(3y)(2x+3y) + (3y)^2 = 12×12×12
=>8x^3 + 18xy(2x+3y) + 27y^3 = 1728
From (1)&(2) we have
2x+3y = 12 and xy=6
On Substituting this value in above
=>8x^3 +18(6)(12)+27y^3 = 1728
=>8x^3 + 1296 + 27y^3 = 1728
=>8x^3+27y^3 = 1728-1296
=>8x^3+27y^3 = 432
Therefore,8x^3+27y^3 = 432
Answer:-
The value of 8x³+27y³ for the given problem is 432
Used formula:-
- (a+b)^3 = a^3 +3ab (a+b)+b^3
- (a+b)^3 = a^3+3a^2b+3ab^2+b^3
Similar questions
Math,
1 month ago
English,
1 month ago
Computer Science,
4 months ago
English,
4 months ago
Social Sciences,
10 months ago
Math,
10 months ago
Hindi,
10 months ago