Math, asked by MrSarthakarora, 1 year ago

if 2x+3y,=13 and xy=6 find the value of 8x^3+27y^3

Answers

Answered by Anonymous
4

2x + 3y = 13 \\ xy = 6 \\  {(2x + 3y)}^{3}  = 8 {x}^{3}  + 27 {y}^{3}  +  3 \times 2x \times 3y(2x + 3y) \\   {13}^{3}  = 8 {x}^{3}  + 27 {y}^{3}  + 18 \times 6(13) \\ 8 {x}^{3}  + 27 {y}^{3}  = 793
Answered by Salmonpanna2022
1

Step-by-step explanation:

Given :

2x + 3y = 13 and xy = 6

To find :

value of 8x³ + 27y³

 

Solution :  

By using the identity, (a + b)³ = a³ + b³ + 3ab(a + b)  

On cubing 2x + 3y = 13 both sides,  

(2x + 3y)³ = (13)³

(2x)³ + (3y)³ + 3( 2x )(3y) (2x + 3y) = 2197

8x³ + 27y³ + 18xy(2x + 3y) = 2197

8x³ + 27y³ + 18 x 6 x 13 = 2197

8x³ + 27y³ + 1404 = 2197

8x³ + 27y³ = 2197 – 1404  

8x³ + 27y³ = 793

Hence the value of  8x³ + 27y³ is  793.

Learn more:

 

Similar questions :

Find the value of 27x³ + 8y³, if (i) 3x + 2y = 14 and xy=8 (ii) 3x + 2y = 20 and xy=

https://brainly.in/question/15897800

 

If 2x +3y = 8 and xy = 2, find the value of 4x² +9y²

https://brainly.in/question/15897587

Similar questions