Math, asked by shahidpegasus, 1 year ago

If 2x-3y=4 , 2x+3y=5 what is the value of 9x*x+4y*y

Answers

Answered by Anonymous
4

9x {}^{2}  + 4y {}^{2}  =( 3x) {}^{2}  + (2y) {}^{2}  \\  = (3x + 2y) {}^{2}  - 12xy \\  = ( \frac{27}{4}  +  \frac{1}{3} ) {}^{2}  - 2( \frac{27}{4} )( \frac{1}{3} ) \\  =  \frac{6577}{144}

now ...

2x+3y=5

2x-3y=4

therefore...4x=9

=>X=9/4=>3x=27/4

therefore..y=1/6=>2y=1/3

now....

Answered by ItzShinyQueen13
1

\bold\pink {\bf {\underline {Given:-}}}

{ \tt{2x - 3y = 4}}

{ \tt{2x + 3y = 4}}

\bold\purple {\bf {\underline {To\:Find:-}}}

The value of {\tt{9 {x}^{2} + 4 {y}^{2}}}

\huge\bold\red{\bf {\underline {Solution:-}}}

After adding the equations, we got,

{ \tt{4x = 9}}

⟹  {\tt{x =  \frac{9}{4}}}

\bold {\bf{Hence,\:The\:Value\:of\:x\:is\:\frac {9}{4}}}

Now, after putting the value of {\tt {x}} in the 2ⁿᵈ equation we got,

{ \tt{2 \times  \frac{9}{4}  + 3y = 5}}

⟹ { \tt{\frac{9}{2}  + 3y = 5}}

⟹ { \tt{3y = 5 -  \frac{9}{2} }}

⟹ {\tt{3y =  \frac{10 - 9}{2} }}

⟹{ \tt{3y =  \frac{1}{2} }}

⟹ { \tt{ y= \frac{1}{6} }}

\bold{\bf{Hence,\:the\:value\:of\:y\:is\:\frac {1}{6}}}

_______________________________

After putting the value of {\tt {x}} and {\tt {y}} in the given expression, we got,

{ \tt{9 \times  {( \frac{9}{4} )}^{2}  + 4 \times  { (\frac{1}{6} )}^{2} }}

⟹{ \tt{9 \times  \frac{81}{16} + 4 \times  \frac{1}{36}  }}

⟹ { \tt{\frac{729}{16}  +  \frac{4}{36} }}

⟹{ \tt{ \frac{729}{16}  +  \frac{1}{9}}}

⟹ {\tt{ \frac{6561 + 16}{144} }}

⟹{ \tt{ \frac{6577 }{144} }}

\bold\green {\bf {Answer:\frac {6577}{144}}}

Similar questions