if 2x + 3y = 8 and xy=2 find the value of: a. 8x^3 + 27y^3 and b (2x-3y)^3
Answers
Answered by
1
Answer:
the value of: a. 8x^3 + 27y^3 = 224 and b (2x-3y)^3 = 64
Step-by-step explanation:
Given , 2x + 3y = 8 & x × y = 2
∴ = = 64 → (a)
again , 2x 3y = 6xy = 12 →(b)
from (a) , (2x)^2 + (3y)^2 + 2 (2x) (3y) = 64
⇒ (2x)^2 + (3y)^2 + 2 × 12 = 64 [ from (b) ]
⇒ (2x)^2 + (3y)^2 = 64 - 24 = 40 → (c)
⇒ (2x)^2 + (3y)^2 - 2 (2x) (3y) = 40 - 24 = 16
⇒ = 16
⇒ 2x-3y = 4
⇒ = 64
now 8x^3 + 27y^3 = (2x)^3 + (3y)^3 = (2x + 3y) {(2x)^2 - (2x) (3y) + (3y)^2 }
= 8 × {(2x)^2 + (3y)^2 - (2x) (3y) }
= 8 × (40 - 12) [from (b) & (c)]
= 8 ×28 = 224
Similar questions