Math, asked by JYOTIPRAKASHLENKA, 1 year ago

if 2x+y=23 and 4x-y=19 ;find the values of x-3y and 5y-2x

Answers

Answered by KVaishu
35
Given two equations, 2x + y = 23 and 4x - y = 19.
Let's add both the equations to eliminate 'y' value and find out 'x' value.
                                           4x -  y = 19
                                     +    2x + y = 23
                                --------------------------------
                                             6x = 42
                                               x = 7
Now let's substitute 'x' value in any of the given equations
                                        2 (7) + y = 23
                                          14 + y = 23
                                               y = 9
Now let's substitute 'x' and 'y' values in the given expressions
                                        x - 3y = 7 - 3 (9)
                                                  = 7 - 27
                                                  = -20
                                        5y - 2x = 5 (9) - 2 (7)
                                                    = 45 - 14
                                                    = 34
∴ The values of x - 3y and 5y - 2x are -20 and 34 respectively.


Hope my answer helps you..

JYOTIPRAKASHLENKA: thanks
KVaishu: If it really helps you then please grade it as the Brainliest answer
KVaishu: If any other one answers the question
JYOTIPRAKASHLENKA: ok
KVaishu: Thanks
JYOTIPRAKASHLENKA: wrong
JYOTIPRAKASHLENKA: 45-14=31
KVaishu: Yeah. Sorry..
Answered by ratribhattacharrya3
21

Hey mate here is your answer:-

Step-by-step explanation:-

2x+y=23.......1)

4x-y=19........2)

Adding eq. 1) and eq.2)

2x+y=23

+4x-y=19

As both the y(s) are cancelled

6x=42 is the result

x=42/6

x=7

Now putting x=7 in eq.2)

4x-y=19

4×7-y=19

28-y=19

y=28-19

y=9

So,

x-3y=7-3×9

7-27

x-3y=-20

Again,

5y-2x=5×9-2×7

45-14

5y-2x=31

I HOPE IT HELPS YOU......

PLS MARK IT AS BRAINLEAST ANSWER....

Similar questions